1,112 research outputs found

    Autonomy Infused Teleoperation with Application to BCI Manipulation

    Full text link
    Robot teleoperation systems face a common set of challenges including latency, low-dimensional user commands, and asymmetric control inputs. User control with Brain-Computer Interfaces (BCIs) exacerbates these problems through especially noisy and erratic low-dimensional motion commands due to the difficulty in decoding neural activity. We introduce a general framework to address these challenges through a combination of computer vision, user intent inference, and arbitration between the human input and autonomous control schemes. Adjustable levels of assistance allow the system to balance the operator's capabilities and feelings of comfort and control while compensating for a task's difficulty. We present experimental results demonstrating significant performance improvement using the shared-control assistance framework on adapted rehabilitation benchmarks with two subjects implanted with intracortical brain-computer interfaces controlling a seven degree-of-freedom robotic manipulator as a prosthetic. Our results further indicate that shared assistance mitigates perceived user difficulty and even enables successful performance on previously infeasible tasks. We showcase the extensibility of our architecture with applications to quality-of-life tasks such as opening a door, pouring liquids from containers, and manipulation with novel objects in densely cluttered environments

    Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Full text link
    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides, or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ~0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Exploring a string-like landscape

    Full text link
    We explore inflationary trajectories within randomly-generated two-dimensional potentials, considered as a toy model of the string landscape. Both the background and perturbation equations are solved numerically, the latter using the two-field formalism of Peterson and Tegmark which fully incorporates the effect of isocurvature perturbations. Sufficient inflation is a rare event, occurring for only roughly one in 10510^5 potentials. For models generating sufficient inflation, we find that the majority of runs satisfy current constraints from WMAP. The scalar spectral index is less than 1 in all runs. The tensor-to-scalar ratio is below the current limit, while typically large enough to be detected by next-generation CMB experiments and perhaps also by Planck. In many cases the inflationary consistency equation is broken by the effect of isocurvature modes.Comment: 24 pages with 8 figures incorporated, matches version accepted by JCA

    Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation.

    Get PDF
    Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction

    Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

    Get PDF
    Abstract The control of neuroprosthetic devices from the activity of motor cortex neurons benefits from learning effects where the function of these neurons is adapted to the control task. It was recently shown that tuning properties of neurons in monkey motor cortex are adapted selectively in order to compensate for an erroneous interpretation of their activity. In particular, it was shown that the tuning curves of those neurons whose preferred directions had been misinterpreted changed more than those of other neurons. In this article, we show that the experimentally observed self-tuning properties of the system can be explained on the basis of a simple learning rule. This learning rule utilizes neuronal noise for exploration and performs Hebbian weight updates that are modulated by a global reward signal. In contrast to most previously proposed reward-modulated Hebbian learning rules, this rule does not require extraneous knowledge about what is noise and what is signal. The learning rule is able to optimize the performance of the model system within biologically realistic periods of time and under high noise levels. When the neuronal noise is fitted to experimental data, the model produces learning effects similar to those found in monkey experiments

    3.6 and 4.5 ΞΌ\mum Spitzer{\it Spitzer} Phase Curves of the Highly-Irradiated Hot Jupiters WASP-19b and HAT-P-7b

    Get PDF
    We analyze full-orbit phase curve observations of the transiting hot Jupiters WASP-19b and HAT-P-7b at 3.6 and 4.5 ΞΌ\mum obtained using the Spitzer Space Telescope. For WASP-19b, we measure secondary eclipse depths of 0.485%Β±0.024%0.485\%\pm 0.024\% and 0.584%Β±0.029%0.584\%\pm 0.029\% at 3.6 and 4.5 ΞΌ\mum, which are consistent with a single blackbody with effective temperature 2372Β±602372 \pm 60 K. The measured 3.6 and 4.5 ΞΌ\mum secondary eclipse depths for HAT-P-7b are 0.156%Β±0.009%0.156\%\pm 0.009\% and 0.190%Β±0.006%0.190\%\pm 0.006\%, which are well-described by a single blackbody with effective temperature 2667Β±572667\pm 57 K. Comparing the phase curves to the predictions of one-dimensional and three-dimensional atmospheric models, we find that WASP-19b's dayside emission is consistent with a model atmosphere with no dayside thermal inversion and moderately efficient day-night circulation. We also detect an eastward-shifted hotspot, suggesting the presence of a superrotating equatorial jet. In contrast, HAT-P-7b's dayside emission suggests a dayside thermal inversion and relatively inefficient day-night circulation; no hotspot shift is detected. For both planets, these same models do not agree with the measured nightside emission. The discrepancies in the model-data comparisons for WASP-19b might be explained by high-altitude silicate clouds on the nightside and/or high atmospheric metallicity, while the very low 3.6 ΞΌ\mum nightside planetary brightness for HAT-P-7b may be indicative of an enhanced global C/O ratio. We compute Bond albedos of 0 (<0.08<0.08 at 1Οƒ1\sigma) and 0.38Β±0.060.38\pm 0.06 for WASP-19b and HAT-P-7b, respectively. In the context of other planets with thermal phase curve measurements, we show that WASP-19b and HAT-P-7b fit the general trend of decreasing day-night heat recirculation with increasing irradiation.Comment: 22 pages, 29 figures, accepted by Ap

    Angiotensin I-Converting Enzyme Mutation (Trp1197Stop) Causes a Dramatic Increase in Blood ACE

    Get PDF
    BACKGROUND:Angiotensin-converting enzyme (ACE) metabolizes many peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels may be associated with an increased risk for different cardiovascular or respiratory diseases, including asthma. Previously, a molecular mechanism underlying a 5-fold familial increase of blood ACE was discovered: Pro1199Leu substitution enhanced the cleavage-secretion process. Carriers of this mutation were Caucasians from Europe (mostly Dutch) or had European roots. METHODOLOGY/PRINCIPAL FINDINGS:We have found a family of African-American descent whose affected members' blood ACE level was increased 13-fold over normal. In affected family members, codon TGG coding for Trp1197 was substituted in one allele by TGA (stop codon). As a result, half of ACE expressed in these individuals had a length of 1196 amino acids and lacked a transmembrane anchor. This ACE mutant is not trafficked to the cell membrane and is directly secreted out of cells; this mechanism apparently accounts for the high serum ACE level seen in affected individuals. A haplotype of the mutant ACE allele was determined based on 12 polymorphisms, which may help to identify other carriers of this mutation. Some but not all carriers of this mutation demonstrated airflow obstruction, and some but not all have hypertension. CONCLUSIONS/SIGNIFICANCE:We have identified a novel Trp1197Stop mutation that results in dramatic elevation of serum ACE. Since blood ACE elevation is often taken as a marker of disease activity (sarcoidosis and Gaucher diseases), it is important for clinicians and medical scientists to be aware of alternative genetic causes of elevated blood ACE that are not apparently linked to disease

    Outcomes in HIV-Infected Adults With Tuberculosis at Clinics With and Without Co-Located HIV Clinics in Botswana

    Get PDF
    SETTING Gaborone, Botswana. OBJECTIVE To determine if starting anti-tuberculosis treatment at clinics in Gaborone without co-located human immunodeficiency virus (HIV) clinics would delay time to highly active antiretroviral therapy (HAART) initiation and be associated with lower survival compared to starting anti-tuberculosis treatment at clinics with on-site HIV clinics. DESIGN Retrospective cohort study. Subjects were HAART-naΓ―ve, aged β‰₯21 years with pulmonary tuberculosis (TB), HIV and CD4 counts ≀250 cells/mm3 initiating anti-tuberculosis treatment between 2005 and 2010. Survival at completion of anti-tuberculosis treatment or at 6 months post-treatment initiation and time to HAART after anti-tuberculosis treatment initiation were compared by clinic type. RESULTS Respectively 259 and 80 patients from clinics without and with on-site HIV facilities qualified for the study. Age, sex, CD4, baseline sputum smears and loss to follow-up rate were similar by clinic type. Mortality did not differ between clinics without or with on-site HIV clinics (20/250, 8.0% vs. 8/79, 10.1%, relative risk 0.79, 95%CI 0.36–1.72), nor did median time to HAART initiation (respectively 63 and 66 days, P = 0.53). CONCLUSION In urban areas where TB and HIV programs are separate, geographic co-location alone without further integration may not reduce mortality or time to HAART initiation among co-infected patients

    Angiotensin I-Converting Enzyme Gln1069Arg Mutation Impairs Trafficking to the Cell Surface Resulting in Selective Denaturation of the C-Domain

    Get PDF
    Angiotensin-converting enzyme (ACE; Kininase II; CD143) hydrolyzes small peptides such as angiotensin I, bradykinin, substance P, LH-RH and several others and thus plays a key role in blood pressure regulation and vascular remodeling. Complete absence of ACE in humans leads to renal tubular dysgenesis (RTD), a severe disorder of renal tubule development characterized by persistent fetal anuria and perinatal death.Patient with RTD in Lisbon, Portugal, maintained by peritoneal dialysis since birth, was found to have a homozygous substitution of Arg for Glu at position 1069 in the C-terminal domain of ACE (Q1069R) resulting in absence of plasma ACE activity; both parents and a brother who are heterozygous carriers of this mutation had exactly half-normal plasma ACE activity compared to healthy individuals. We hypothesized that the Q1069R substitution impaired ACE trafficking to the cell surface and led to accumulation of catalytically inactive ACE in the cell cytoplasm. CHO cells expressing wild-type (WT) vs. Q1069R-ACE demonstrated the mutant accumulates intracellularly and also that it is significantly degraded by intracellular proteases. Q1069R-ACE retained catalytic and immunological characteristics of WT-ACE N domain whereas it had 10–20% of the nativity of the WT-ACE C domain. A combination of chemical (sodium butyrate) or pharmacological (ACE inhibitor) chaperones with proteasome inhibitors (MG 132 or bortezomib) significantly restored trafficking of Q1069R-ACE to the cell surface and increased ACE activity in the cell culture media 4-fold.Homozygous Q1069R substitution results in an ACE trafficking and processing defect which can be rescued, at least in cell culture, by a combination of chaperones and proteasome inhibitors. Further studies are required to determine whether similar treatment of individuals with this ACE mutation would provide therapeutic benefits such as concentration of primary urine
    • …
    corecore